viernes, 31 de mayo de 2013

SENSOR DE TEMPERATURA DIGITAL BINARIO CON LM35 Y ADC 0804

Comenzaremos con el diseño de un termómetro que muestra el valor de la temperatura en valores binarios basado en un sensor de temperatura, el LM35 que muestra el valor de la temperatura en proporción de un grado centígrado por 10mv a su salida y  el convertidor analógico a digital ADC0804 que será configurado para que nos muestre una variación de temperatura de 0 ºC hasta 127ºC.
Circuito del termómetro


LM35
Sensor de temperatura de precisión  en grados centígrados
El circuito  integrado LM35 es un sensor de temperatura de precisión, cuya tensión de salida es linealmente proporcional a la temperatura en grados Celsius (centígrados). El LM35 tiene por lo tanto una ventaja sobre los sensores de temperatura lineales calibrados  en grados  Kelvin, ya que el usuario no está obligado a restar un voltaje constante a su salida a obtener el resultado en centígrados. El LM35 no requiere ninguna calibración o recorte para proporcionar precisiones típicas de ± 1/4 ° C a temperatura ambiente y ± 3/4 ° C durante un total -55 a 150 ° C rango de temperatura.  El LM35 tiene una baja impedancia en la salida, salida lineal y calibración inherente preciso para realizar una  interfaz de lectura o de circuitos de control de manera fácil.  Puede ser utilizado con fuentes de alimentación individuales, o con más y suministros de menos. Como sólo hace uso de  60 μA, tiene muy bajo calentamiento espontáneo, menos de 0,1 ° C en el aire inmóvil. El LM35 es esta diseñado ​​para  medir un  rango de temperatura de -55 ° a +150 ° C.
 Usted podrá encontrar diferentes tipos de empaquetado disponibles  de LM35, para este circuitharé uso del LM35D que está disponible en un paquete de transistor TO-92 de plástico.


Vista desde bajo

Características principales
  • Esta calibrado en grados  Celsius (centígrados)
  • Escala lineal  de + 10,0 mV / ° C
  • Posee una exactitud de 0,5 ° C (a 25 ° C)
  • Muestra temperaturas de un rango de -55 ° a +150 ° C
  • Opera de 4 a 30 voltios
  • Consumo de corriente menor a 60 μA
  • Bajo calentamiento espontáneo, 0.08 ° C en aire
  • Salida de baja impedancia, 0.1 W para la carga 1 mA


ADC0804
Con este convertidor analógico a digital podremos cuantificar el valor de la temperatura con una salida de 8 bits, que nos da un rango de variación de 0 a 127 grados centígrados. Conectamos el pin 2 del LM35 Al pin 6 del ADC0804 (Entrada no inversora analógica Vin (+)). 

Para que nuestro termómetro mida de 0 a 1207 grados centígrados tenemos que poner en el pin 9 (Pin de entrada, define la tensión de referencia para la entrada analógica Vref / 2) a un voltaje de 0.64 voltios, lo cual lograremos variando el potenciómetro de manera que por cada incremento de un grado centígrado se incrementara en 10mv la salida del LM35 lo cual hará que la salida del ADC0804 se incremente en un bit valido en nuestro circuito (nótese que para este caso el pin 18 que es el menos significativo no se toma en cuenta). Para este circuito haremos uso del reloj interno del ADC0805 haciendo una configuración como se muestra en la figura siguiente.
Diagrama del sensor de temperatura binario

Lista de componentes
  • R1   10KΩ
  • R2   330Ω
  • R3   330Ω
  • R4   330Ω
  • R5   330Ω
  • R6   330Ω
  • R7   330Ω
  • R8   330Ω
  • R9   10KΩ
  • R10  100Ω
  • RV1   10KΩ (Potenciometro, de 10k para que puedan variar en el pin de referencia de 0 v a 2.5v)
  • C1     100nf  cerámico
  • C2     150nf cerámico
  • C3     1uf   electrolítico
  • LM35 sensor de temperatura
  • ADC0804 convertidor analógico a digital
  • 7 diodos led
  • Fuente de alimentación de 5 voltios
NOTA IMPORTANTE:
Recuerden no ponerle voltajes negativos al adc pues lo dañaran. el valor máximo de la señal a maestrear es de 5Vpp (voltaje pico-pico)



viernes, 24 de mayo de 2013

ADC0804 CONVERSOR ANALOGO DIGITAL

Descripción de los ADC
Los ADC son convertidores analógicos a digitales tienen una gran variedad de aplicaciones, como un dispositivo intermedio que convierte  las señales de forma analógica a digital. Estas señales al ser digitalizadas  se utilizan para el procesamiento de los procesadores digitales. Por ejemplo nosotros encontramos una gran diversidad de sensores que convierten las características físicas del medio en señales analógicas sensores tales como latidos del corazón, la temperatura, presión, fuerza, distancia, etc.

El ADC0804
El ADC0804 es un convertidor  de señal analógica a digital de 8 bits. Este ADC0804 cuenta con un solo canal de entrada analógica  con una salida digital de ocho bits que puede mostra  256 valores de medidas diferentes. El tamaño de paso se ajusta mediante el establecimiento de la tensión de referencia en pin9 la entrada de referencia de voltaje puede ser ajustado para permitir que codificar cualquiera rango de tensión analógica más pequeña para la totalidad de 8 bits de resolución. Cuando en el adc0804 no se conecta el pin tensión de referencia, la tensión de referencia por defecto es la tensión de funcionamiento, es decir, Vcc. El tamaño del paso a 5V es 19.53mV (5V/255), es decir, por cada aumento de 19.53mV en la entrada analógica, la salida varía por 1 unidad. Para establecer un nivel de tensión determinado como valor de referencia, esta clavija está conectada a la mitad de la tensión. Por ejemplo, para establecer una referencia de 2V (Vref), pin9 está conectado a 1V (Vref / 2), reduciendo de este modo el tamaño del paso a 7.84mV (2V/255).


ADC0804 también necesita un reloj para operar. El tiempo de conversión del valor analógico a un  valor digital depende de la fuente de reloj. Podemos conectar un reloj externo en el pin 4 o podemos hacer uso de su reloj incorporado, colocando  de un circuito RC.



  • Pin1 Activa ADC; activo bajo
  • Pin2 Pin de entrada; De mayor a menor pulso trae los datos de los registros internos de los pines de salida después de la conversión
  • Pin3 Pin de entrada; menor a mayor impulso se dio para iniciar la conversión
  • Pin4 Pin de entrada del reloj, para darle reloj externo
  • Pin5 Pin de salida, pasa a nivel bajo cuando la conversión se ha completado
  • Pin6 Entrada no inversora analógica Vin (+)
  • Pin7 Entrada de inversión analógica, normalmente tierra Vin (-)
  • Pin8 Tierra (0 V)
  • Pin9 Pin de entrada, define la tensión de referencia para la entrada analógica Vref / 2
  • Pin10 Tierra (0 V)
  • Pin11 bit salida digital D7
  • Pin12 bit salida digital D6
  • Pin13 bit salida digital D5
  • Pin14 bit salida digital D4
  • Pin15 bit salida digital D3
  • Pin16  bit salida digital D2
  • Pin17 bit salida digital D1
  • Pin18 bit salida digital D0
  • Pin19 Utilizado con el reloj en pin cuando se utiliza fuente de reloj interno
  • Pin20 Tensión de alimentación (5V)

RELOJ
El reloj para el A/D se puede derivar de una fuente externa como el reloj de la CPU o una red RC externa pueden ser añadirse para proporcionar el reloj interno. El CLK IN (pin 4) hace el uso de un disparador de Schmitt, como se muestra en la Figura . Debe evitarse una alta carga capacitiva  o alta carga  DC del R pin CLK ya que esto perturba el funcionamiento normal del convertidor.
Uso del reloj interno

 Reiniciar Durante una conversión
Si se reinicia el convertidor A/D (CS y WR ir bajo y vuelven alto) durante una conversión, el convertidor se pone a cero y un nuevo se inicia la conversión. El pestillo de datos de salida no se actualiza si la conversión en curso no se completa. Los datos de los la conversión anterior permanezca en este pestillo.
Carrera libre
En esta aplicación, la entrada CS está conectada a tierra y el WR de entrada está ligado a la salida INTR. Este WR y el nodo INTR deben ser momentáneamente obligados a la lógica de baja tras un arranque ciclo para asegurar el funcionamiento del circuito.
Carrera libre